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Objectives

• Develop simulation tools to estimate current density, magnetic field and hysteresis losses in large-scale

superconductor systems, i.e., systems made up of from hundreds to thousands of turns of REBCO tapes.

• Compare simulation results with experimental data:

• 32 T all-superconducting magnet (NHMFL, Florida).

• Develop adequate operation strategies for existing and future systems.
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Analytical Results

H formulation

Homogenization and H formultaion

Multi-scaling and H formulation

T-A formulation

Multi-scaling and T-A formulation

Homogenization and T-A formultaion
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Critical-State Model

• The critical-state model (CSM) is a phenomenological description introduced in [Bean, 1962] to describe the 

magnetic hysteresis of type-II superconductors.

• The CSM states that, no current flows in the regions that are not previously penetrated by the magnetic field.

• The change in the magnetic field produces the appearance of electric field 𝐄. 

• Any 𝐄 value, however small, will induce the critical current density 𝐽𝑐, to flow. 
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Analytical Results

• [Norris, 1969] Losses produced by transport currents.
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• [Brandt, 1994] Losses and current density produced by

external fields.



Analytical Results

• [Norris, 1969] Losses produced by transport currents.
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• [Brandt, 1994] Losses and current density produced by

external fields.

• Just single conductors are analyzed.

• The critical-state model is assumed.

• Constant Jc is assumed.

• Simultaneous transport currents and external fields are not considered.

• There also exist analytical results that assume infinite tape’s stacks

• [Mawatari, 1996]. 

• [Clem, 2008].   

Tape’s stack, [Clem, 2008].



H Formulation
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H  Formulation

• The use of the Finite Element Method and the H formulation was presented in [Brambilla et al., 

2006] and [Hong et al., 2006].

• This strategy allows the overcoming of the limitations of the analytical methods and of the 

formulations using potential vectors.
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H  Formulation

• The use of the Finite Element Method and the H formulation was presented in [Brambilla et al., 

2006] and [Hong et al., 2006].

• This strategy allows the overcoming of the limitations of the analytical methods and of the 

formulations using potential vectors 

• The methods is validated against analytical and experimental results.
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Validation FEM vs experimental, [Sotelo et al., 2016].Validation FEM vs Analytical, [Brambilla et al, 2006].



𝛻 × 𝐄 = −
𝜕(𝐁)

𝜕𝑡
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H  Formulation of  the Maxwell’s Equations 



𝛻 × 𝐄 = −
𝜕(𝐁)

𝜕𝑡Non-linear resistivity

11

H  Formulation of  the Maxwell’s Equations 

𝐄 = 𝜌𝐉 𝐁 = 𝜇𝐇
𝜌 =
𝐸𝑐
𝐽𝑐

𝑱

𝐽𝑐

𝑛−1

𝐽𝑐 = 𝐽𝑐(𝐵, 𝜃)



𝛻 × 𝐄 = −
𝜕(𝐁)

𝜕𝑡Non-linear resistivity
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H  Formulation of  the Maxwell’s Equations 

𝐄 = 𝜌𝐉 𝐁 = 𝜇𝐇

𝛻 × 𝜌𝐉 = −𝜇
𝜕(𝐇)

𝜕𝑡

𝜌 =
𝐸𝑐
𝐽𝑐

𝑱

𝐽𝑐

𝑛−1

𝐽𝑐 = 𝐽𝑐(𝐵, 𝜃)



𝛻 × 𝐄 = −
𝜕(𝐁)

𝜕𝑡
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𝐄 = 𝜌𝐉 𝐁 = 𝜇𝐇

𝛻 × 𝜌𝐉 = −𝜇
𝜕(𝐇)

𝜕𝑡

𝛻 × 𝐇 = 𝐉

𝛻 × 𝜌𝛻 × 𝐇 = −𝜇
𝜕(𝐇)

𝜕𝑡

H  Formulation of  the Maxwell’s Equations 

Non-linear resistivity

𝜌 =
𝐸𝑐
𝐽𝑐

𝑱

𝐽𝑐

𝑛−1

𝐽𝑐 = 𝐽𝑐(𝐵, 𝜃)



Case Study
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• The case study is a racetrack coil made of HTS tapes.

• The symmeties of the system allow modeling ¼ of the cross-section of the coil.



Case Study – Reference Model (H Full Model)
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Case Study – Reference Model (H Full Model)
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• The models are simulated for one cycle of a sinusoidal transport current with an amplitude of 11 A, and a

frequency of 50 Hz.

Average hysteresis losses

Computation time



Limitations of the H Full Model

• The H formulation has become the de facto standard within the community. 

• The application of the FEM and the H formulation to large-scale systems is impaired by excessive 

computation times and memory requirements. 
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Homogenization and multi-scale

strategies have been proposed to 

increase the computational efficiency.



Homogenization 
and 
H Formulation
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Homogenization and H Formulation

• The homogenizations tranforms a stack of

HTS tapes into an anisotropic bulk, such

that the geometrical layout of the internal

alternating structures is “washed” out while

keeping the overall electromagnetic

behavior [Zermeño et al., 2012].
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Homogenization and H Formulation

• The homogenizations tranforms a stack of HTS tapes into an

anisotropic bulk, such that the geometrical layout of the

internal alternating structures is “washed” out while keeping

the overall electromagnetic behavior [Zermeño et al., 2012].

• A new equivalent critical current density is defined

where 𝑓𝐻𝑇𝑆 is the volume fraction of the superconducting

material.

• The homogenized stack is divided in subsets, and a new

transport current is impressed in each subset, depending on

the turns it represents
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 𝐼𝑘 𝑡 =  
𝛺𝑘

𝐽 𝑥, 𝑦, 𝑡 𝑑𝑥𝑑𝑦
[Zermeño et al., 2012].

𝐽𝑐,𝑒𝑞(𝐵, 𝜃) = 𝑓𝐻𝑇𝑆 ∙ 𝐽𝑐 𝐵, 𝜃



Definitions

5

𝐽𝐶 =  𝐼𝐶 𝐴𝑟𝑒𝑎



Case Study H Homogeneous Model
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Losses error Normalized comp. timeJ coef. of det.



Multi-scaling 
and 
H Formulation
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Multi-scaling and H Formulation

• The multi-scale model is composed by the coil

submodel and the single-tape submodel

[Queval et al., 2016].
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Multi-scaling and H Formulation
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Coil Submodel

Single Tape Submodel

• 2D planar model.

• Includes all the tapes.

• A-formulation magnetostatic.

• 2D planar model.

• Includes only one tape.

• H formulation dynamic model.

• The multi-scale model is composed by the coil

submodel and the single-tape submodel

[Queval et al., 2016].

• The H field is estimated with the coil submodel.

• The H field along the boundary of the analyzed

tapes is exported to the single tape submodel as

a time-dependent Dirichlet boundary condition.

𝛻 × 𝛻 × 𝐀 = 𝜇𝐉

𝛻 × 𝜌𝛻 × 𝐇 = −𝜇
𝜕(𝐇)

𝜕𝑡
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Multi-scaling and H Formulation
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Multi-scaling and H Formulation
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Multi-scaling and H Formulation
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Multi-scaling and H Formulation
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Multi-scaling and H Formulation
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Multi-scaling and H Formulation



Iterative Multi-scaling and H Formulation

• The iterative multi-scaling strategy the iterative

implementation of the multi-scaling strategy

[Berrospe et al., 2018].

32



33

Iterative Multi-scaling and H Formulation
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Iterative Multi-scaling and H Formulation
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Iterative Multi-scaling and H Formulation
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Iterative Multi-scaling and H Formulation
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Iterative Multi-scaling and H Formulation
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Iterative Multi-scaling and H Formulation
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Iterative Multi-scaling and H Formulation
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Iterative Multi-scaling and H Formulation
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Iterative Multi-scaling and H Formulation
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Iterative Multi-scaling and H Formulation
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Iterative Multi-scaling and H Formulation
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Iterative Multi-scaling and H Formulation



Case Study H Iterative Multi-scale Model
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Losses error Normalized comp. timeJ coef. of det.
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Iterative Multi-scaling and 32 T All-Superconducting Magnet



NHMFL 32 T Superconducting Magnet 

• The 32 T magnet is one-of-a-kind all superconduction magnet.

• The conducted analysis is focused in the HTS insert, at self field conditions.
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Sketch of the 32 T magnet from NHMFL 
[Xia et al., 2015].



NHMFL 32 T Superconducting Magnet 

• The 32 T magnet is one-of-a-kind all superconduction magnet.

• The conducted analysis is focused in the HTS insert, at self field conditions.
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Sketch of the 32 T magnet from NHMFL 
[Xia et al., 2015].

More than 20,000 turns



NHMFL 32 T Superconducting Magnet - Multi-scale Model

49

• The LTS outsert is not considered.

• The non-analyzed tapes are

homogenized, a bulk region is

considered.

• The more analyzed tapes are considered

in the upper pancakes.
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• The LTS outsert is not considered.

• The non-analyzed tapes are

homogenized, a bulk region is

considered.

• The more analyzed tapes are considered

in the upper pancakes.

• The coefficient 𝛽 allows to consider

different Jc values in each section

NHMFL 32 T Superconducting Magnet - Multi-scale Model



NHMFL 32 T Superconducting Magnet - Multi-scale Model
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• The insert is charged linearly and subsequently

discharged.



NHMFL 32 T Superconducting Magnet - Multi-scale Model
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Magnetic field magnitude at peak current for the first 
and last iterations. J at peak current in the last iterations. Just some pancakes are 

presented.

• The insert is charged linearly and subsequently

discharged.



NHMFL 32 T Superconducting Magnet - Multi-scale Model

53Losses in the 32 T insert.

J at peak current in the last iterations. Just some pancakes are 
presented.



T-A Formulation
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• The T-A formulation was presented in [Brambilla et al., 2006] and [Hong et al., 2006].

• This strategy allows building mor efficient models of systems made of HTS tapes.
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T-A Formulation



• The T-A formulation is implemented by the combination of the T

and the A formulations.
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T-A Formulation

𝐁 = 𝛻 × 𝐀 𝐉 = 𝛻 × 𝐓



• The T-A formulation is implemented by the combination of the T

and the A formulations.
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T-A Formulation

𝐁 = 𝛻 × 𝐀 𝐉 = 𝛻 × 𝐓

𝛻 × 𝐇 = 𝐉 𝛻 × 𝐄 = −
𝜕(𝐁)

𝜕𝑡



• The T-A formulation is implemented by the combination of the T

and the A formulations.
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T-A Formulation

𝐁 = 𝛻 × 𝐀 𝐉 = 𝛻 × 𝐓

𝛻 × 𝐇 = 𝐉

𝐁 = 𝜇𝐇

𝛻 × 𝐄 = −
𝜕(𝐁)

𝜕𝑡

𝜌𝐉 = 𝐄



• The T-A formulation is implemented by the combination of the T

and the A formulations.
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T-A Formulation

𝐁 = 𝛻 × 𝐀 𝐉 = 𝛻 × 𝐓

𝛻 × 𝐇 = 𝐉

𝐁 = 𝜇𝐇

𝛻 × 𝐄 = −
𝜕(𝐁)

𝜕𝑡

𝜌𝐉 = 𝐄

𝐁 = 𝛻 × 𝐀 𝐉 = 𝛻 × 𝐓



• The T-A formulation is implemented by the combination of the T

and the A formulations.
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T-A Formulation

𝐁 = 𝛻 × 𝐀

𝛻 × 𝐇 = 𝐉

𝐁 = 𝜇𝐇

𝛻 × 𝛻 × 𝐀 = 𝜇𝐉

𝛻 × 𝐄 = −
𝜕(𝐁)

𝜕𝑡

𝜌𝐉 = 𝐄

𝛻 × 𝜌𝛻 × 𝐓 = −
𝜕(𝐁)

𝜕𝑡

𝐁 = 𝛻 × 𝐀 𝐉 = 𝛻 × 𝐓

𝐉 = 𝛻 × 𝐓



• The T-A formulation is implemented by the combination of the T

and the A formulations.

• A is defined all over the bounded universe, while T is exclusively

defined along the superconducting medium.
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T-A Formulation

𝛻 × 𝜌𝛻 × 𝐓 = −
𝜕(𝐁)

𝜕𝑡

𝐁 = 𝛻 × 𝐀 𝐉 = 𝛻 × 𝐓

𝛻 × 𝛻 × 𝐀 = 𝜇𝐉



• The T-A formulation is implemented by the combination of the T

and the A formulations.

• A is defined all over the bounded universe, while T is exclusively

defined along the superconducting medium.

• The superconducting layer of the tapes are modelled as one

dimensional (1D) objects.
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T-A Formulation

𝛻 × 𝜌𝛻 × 𝐓 = −
𝜕(𝐁)

𝜕𝑡

𝐁 = 𝛻 × 𝐀 𝐉 = 𝛻 × 𝐓

𝛻 × 𝛻 × 𝐀 = 𝜇𝐉



• The T-A formulation is implemented by the combination of the T

and the A formulations.

• A is defined all over the bounded universe, while T is exclusively

defined along the superconducting medium.

• The superconducting layer of the tapes are modelled as one

dimensional (1D) objects.
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T-A Formulation

𝛻2𝐴𝑧 = −𝜇 𝐽𝑧

𝛻 × 𝜌𝛻 × 𝐓 = −
𝜕(𝐁)

𝜕𝑡

𝐁 = 𝛻 × 𝐀 𝐉 = 𝛻 × 𝐓

𝜕

𝜕𝑥
𝜌𝐻𝑇𝑆
𝜕𝑇𝑦

𝜕𝑥
=
𝜕𝐵𝑦

𝜕𝑡

𝐽𝑧 =
𝜕𝑇𝑦

𝜕𝑥
𝐵𝑥 =
𝜕𝐴𝑧
𝜕𝑦
𝐵𝑦 = −
𝜕𝐴𝑧
𝜕𝑥

𝛻 × 𝛻 × 𝐀 = 𝜇𝐉



• The T-A formulation is implemented by the combination of the T

and the A formulations.

• A is defined all over the bounded universe, while T is exclusively

defined along the superconducting medium.

• The superconducting layer of the tapes are modelled as one

dimensional (1D) objects.

• The transport current is imposed by means of the boundary

conditions for T.
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T-A Formulation

𝐼 = (𝑇1 − 𝑇2)𝛿



• The T-A formulation is implemented by the combination of the T

and the A formulations.

• A is defined all over the bounded universe, while T is exclusively

defined along the superconducting medium.

• The superconducting layer of the tapes are modelled as one

dimensional (1D) objects.

• The transport current is imposed by means of the boundary

conditions for T.

• The surface current density K is impressed into the A formulation

by means of a Neumann boundary condition. 65

T-A Formulation

𝐼 = (𝑇1 − 𝑇2)𝛿
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Multi-scaling, Homogenization and T-A Formulation 



• The T-A multi-scale models consider a reduced number

of analyzed tapes.
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Multi-scaling and T-A Formulation



• The T-A multi-scale models consider a reduced number

of analyzed tapes.

• T is exclusively defined along the analyzed tapes.
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𝛻2𝐴𝑧 = −𝜇 𝐽𝑧
𝜕

𝜕𝑥
𝜌𝐻𝑇𝑆
𝜕𝑇𝑦

𝜕𝑥
=
𝜕𝐵𝑦

𝜕𝑡

Multi-scaling and T-A Formulation



• The T-A multi-scale models consider a reduced number

of analyzed tapes.

• T is exclusively defined along the analyzed tapes.

• The J in the non-analyzed tapes is approximated by

interpolation.
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Multi-scaling and T-A Formulation



• The T-A multi-scale models consider a reduced number

of analyzed tapes.

• T is exclusively defined along the analyzed tapes.

• The J in the non-analyzed tapes is approximated by

interpolation.

• The T-A formulation allows the simultaneous

computation of T and A, then it is not necessary to

implement an iterative algorithm.
70

Multi-scaling and T-A Formulation



• The homogenizations tranforms a HTS tapes stack into

an anisotropic bulk.
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Homogenization and T-A Formulation



• The homogenizations tranforms a HTS tapes stack into

an anisotropic bulk.

• T is exclusively defined inside the bulk.

• The influence of 𝐵𝑥 in T is neglected, therefore T is

forced to have only one component.
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𝛻2𝐴𝑧 = −𝜇 𝐽𝑧

𝛻 × 𝜌𝛻 × 𝐓 = −
𝜕(𝐁)

𝜕𝑡

𝐁 = 𝛻 × 𝐀 𝐉 = 𝛻 × 𝐓

𝜕

𝜕𝑥
𝜌𝐻𝑇𝑆
𝜕𝑇𝑦

𝜕𝑥
=
𝜕𝐵𝑦

𝜕𝑡

𝐽𝑧 =
𝜕𝑇𝑦

𝜕𝑥
𝐵𝑥 =
𝜕𝐴𝑧
𝜕𝑦
𝐵𝑦 = −
𝜕𝐴𝑧
𝜕𝑥

𝛻 × 𝛻 × 𝐀 = 𝜇𝐉

Homogenization and T-A Formulation



• The homogenizations tranforms a HTS tapes stack into

an anisotropic bulk.

• T is exclusively defined inside the bulk.

• The influence of 𝐵𝑥 in T is neglected, therefore T is

forced to have only one component.

• The boundary conditions force that each infinitesimal

tape transport the same current of its original

counterpart.
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𝛻2𝐴𝑧 = −𝜇 𝐽𝑧
𝜕

𝜕𝑥
𝜌𝐻𝑇𝑆
𝜕𝑇𝑦

𝜕𝑥
=
𝜕𝐵𝑦

𝜕𝑡

Homogenization and T-A Formulation



• The homogenizations tranforms a HTS tapes stack into

an anisotropic bulk.

• T is exclusively defined inside the bulk.

• The influence of 𝐵𝑥 in T is neglected, therefore T is

forced to have only one component.

• The boundary conditions force that each infinitesimal

tape transport the same current of its original

counterpart.

• The Jz inside the bulk is scale to be impressed as an

external source.
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Homogenization and T-A Formulation



Case Study TA Multi-scale and TA Homogeneous Models
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Case Study Models Comparison
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Case Study Models Comparison
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• Small examples of the code are available on-line. http://www.htsmodelling.com/

Multi-scaling, Homogenization and T-A Formulation 

http://www.htsmodelling.com/


NHMFL 32 T Superconducting Magnet 

• The 32 T magnet is one-of-a-kind all superconduction magnet.

• The conducted analysis is focused in the HTS insert, at self field conditions.

79

Sketch of the 32 T magnet from NHMFL 
[Xia et al., 2015].



NHMFL 32 T Superconducting Magnet  - T-A Homogeneous  Model
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• Both insert and outsert are charged, considering a real charge cycle.



NHMFL 32 T Superconducting Magnet  - T-A Homogenous  Model
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Magnetic field magnitude at peak current.

• Both insert and outsert are charged, considering a real charge cycle.



NHMFL 32 T Superconducting Magnet  - T-A Homogenous  Model
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Magnetic field magnitude at peak current. J at peak current in the last iterations. 



NHMFL 32 T Superconducting Magnet  - T-A Homogenous  Model
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J at peak current in the last iterations. 

Screening Current Induced Field Loop. 

The J distribution is used to compute the stresses,

Kolb-Bond et al. Mon-Af-Po1.11-05: Stress analysis of

the 32 T superconducting magnet at the MagLab

including screening current effects [16].



NHMFL 32 T Superconducting Magnet  - T-A Homogenous  Model

84

Instantaneous losses and charge cycle

Losses in selected pancakes



NHMFL 32 T Superconducting Magnet  - T-A Homogenous  Model
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Instantaneous losses and charge cycle

Losses in selected pancakes

Computation time

• Multi-scale 19 days (without the LTS outsert field).

• Homogeneous 4 h 15 min.



NHMFL 32 T Superconducting Magnet  - T-A Homogenous  Model
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Instantaneous losses and charge cycle

Losses in selected pancakes

Computation time

• Multi-scale 19 days (without the LTS outsert field).

• Homogeneous 4 h 15 min. Real-time computation



NHMFL 32 T Superconducting Magnet 
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Conclusions
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Thank you very much!
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Definitions

5

𝐽𝐶 =  𝐼𝐶 𝐴𝑟𝑒𝑎



Inverse Cumulative Distribution Function Interpolation 
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